If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-50x+75=0
a = 1; b = -50; c = +75;
Δ = b2-4ac
Δ = -502-4·1·75
Δ = 2200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2200}=\sqrt{100*22}=\sqrt{100}*\sqrt{22}=10\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-10\sqrt{22}}{2*1}=\frac{50-10\sqrt{22}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+10\sqrt{22}}{2*1}=\frac{50+10\sqrt{22}}{2} $
| 7y-35=10-3y | | Z-8/5+z=6/7 | | 10w-3=34 | | 3y-3=-2y+8 | | 90+6y-12y=210 | | 1/4e=20 | | R2-6r+9=0 | | 2x^2+20x-325=0 | | 10x=9(x+7) | | -27-2w=7w+36 | | -3(x-5)+6(x+2)=9 | | 5(4-x)-7(-x+2)=4-9+3 | | 10(w-2)-3(w+2)=3-4(w-1) | | 7(u+7)-10u=5(3-4u) | | 5(z-9)+2(z+6=17+3(z+2) | | 7x/8-8=7 | | 9x+11=8x+13 | | 1t-7=7t | | 45*4+56/x=5 | | 5x-9x-6=3 | | 3^2x+3^x-21=0 | | 0.8x-15=0.8(6x-8) | | 29=23+11x+2 | | 29=23+11x+2/2 | | 11x+2=23+29/2 | | 4x-2*(-2x+5)=10 | | 1=4^3x-4 | | 500.000=d(1-(1+0.06/12)^-20(12) | | 0.3n=6.39 | | (4x+35)=(7x-10) | | 5y=315 | | 3x(x-4)-7=2(x-3) |